3.2.30 \(\int \frac {1}{\sqrt {-3-4 x-x^2} (3+4 x+2 x^2)} \, dx\)

Optimal. Leaf size=95 \[ -\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {1-\frac {x+3}{\sqrt {-x^2-4 x-3}}}{\sqrt {2}}\right )+\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {\frac {x+3}{\sqrt {-x^2-4 x-3}}+1}{\sqrt {2}}\right )+\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-x^2-4 x-3}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {986, 12, 1026, 1161, 618, 204, 1027, 206} \begin {gather*} -\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {1-\frac {x+3}{\sqrt {-x^2-4 x-3}}}{\sqrt {2}}\right )+\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {\frac {x+3}{\sqrt {-x^2-4 x-3}}+1}{\sqrt {2}}\right )+\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-x^2-4 x-3}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-3 - 4*x - x^2]*(3 + 4*x + 2*x^2)),x]

[Out]

-(Sqrt[2]*ArcTan[(1 - (3 + x)/Sqrt[-3 - 4*x - x^2])/Sqrt[2]])/3 + (Sqrt[2]*ArcTan[(1 + (3 + x)/Sqrt[-3 - 4*x -
 x^2])/Sqrt[2]])/3 + ArcTanh[x/Sqrt[-3 - 4*x - x^2]]/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 986

Int[1/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt
[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f), 2]}, Dist[1/(2*q), Int[(c*d - a*f + q + (c*e - b*f)*x)/((a + b*x + c
*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[(c*d - a*f - q + (c*e - b*f)*x)/((a + b*x + c*x^2)*Sq
rt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] &&
 NeQ[c*e - b*f, 0] && NegQ[b^2 - 4*a*c]

Rule 1026

Int[(x_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*e,
Subst[Int[(1 - d*x^2)/(c*e - b*f - e*(2*c*d - b*e + 2*a*f)*x^2 + d^2*(c*e - b*f)*x^4), x], x, (1 + ((e + Sqrt[
e^2 - 4*d*f])*x)/(2*d))/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && N
eQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0]

Rule 1027

Int[((g_) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol]
 :> Dist[g, Subst[Int[1/(a + (c*d - a*f)*x^2), x], x, x/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f,
 g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0] && EqQ[2*h*d - g*e, 0]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-3-4 x-x^2} \left (3+4 x+2 x^2\right )} \, dx &=-\left (\frac {1}{6} \int \frac {-6-4 x}{\sqrt {-3-4 x-x^2} \left (3+4 x+2 x^2\right )} \, dx\right )+\frac {1}{6} \int -\frac {4 x}{\sqrt {-3-4 x-x^2} \left (3+4 x+2 x^2\right )} \, dx\\ &=-\left (\frac {2}{3} \int \frac {x}{\sqrt {-3-4 x-x^2} \left (3+4 x+2 x^2\right )} \, dx\right )+\operatorname {Subst}\left (\int \frac {1}{3-3 x^2} \, dx,x,\frac {x}{\sqrt {-3-4 x-x^2}}\right )\\ &=\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-3-4 x-x^2}}\right )-\frac {16}{3} \operatorname {Subst}\left (\int \frac {1+3 x^2}{-4-8 x^2-36 x^4} \, dx,x,\frac {1+\frac {x}{3}}{\sqrt {-3-4 x-x^2}}\right )\\ &=\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-3-4 x-x^2}}\right )+\frac {2}{9} \operatorname {Subst}\left (\int \frac {1}{\frac {1}{3}-\frac {2 x}{3}+x^2} \, dx,x,\frac {1+\frac {x}{3}}{\sqrt {-3-4 x-x^2}}\right )+\frac {2}{9} \operatorname {Subst}\left (\int \frac {1}{\frac {1}{3}+\frac {2 x}{3}+x^2} \, dx,x,\frac {1+\frac {x}{3}}{\sqrt {-3-4 x-x^2}}\right )\\ &=\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-3-4 x-x^2}}\right )-\frac {4}{9} \operatorname {Subst}\left (\int \frac {1}{-\frac {8}{9}-x^2} \, dx,x,\frac {2}{3} \left (-1+\frac {3+x}{\sqrt {-3-4 x-x^2}}\right )\right )-\frac {4}{9} \operatorname {Subst}\left (\int \frac {1}{-\frac {8}{9}-x^2} \, dx,x,\frac {2}{3} \left (1+\frac {3+x}{\sqrt {-3-4 x-x^2}}\right )\right )\\ &=-\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {1-\frac {3+x}{\sqrt {-3-4 x-x^2}}}{\sqrt {2}}\right )+\frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {1+\frac {3+x}{\sqrt {-3-4 x-x^2}}}{\sqrt {2}}\right )+\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-3-4 x-x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 150, normalized size = 1.58 \begin {gather*} \frac {1}{6} i \left (\sqrt {1-2 i \sqrt {2}} \tanh ^{-1}\left (\frac {\left (2-i \sqrt {2}\right ) x-2 i \sqrt {2}+2}{\sqrt {2+4 i \sqrt {2}} \sqrt {-x^2-4 x-3}}\right )-\sqrt {1+2 i \sqrt {2}} \tanh ^{-1}\left (\frac {\left (2+i \sqrt {2}\right ) x+2 i \sqrt {2}+2}{\sqrt {2-4 i \sqrt {2}} \sqrt {-x^2-4 x-3}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-3 - 4*x - x^2]*(3 + 4*x + 2*x^2)),x]

[Out]

(I/6)*(Sqrt[1 - (2*I)*Sqrt[2]]*ArcTanh[(2 - (2*I)*Sqrt[2] + (2 - I*Sqrt[2])*x)/(Sqrt[2 + (4*I)*Sqrt[2]]*Sqrt[-
3 - 4*x - x^2])] - Sqrt[1 + (2*I)*Sqrt[2]]*ArcTanh[(2 + (2*I)*Sqrt[2] + (2 + I*Sqrt[2])*x)/(Sqrt[2 - (4*I)*Sqr
t[2]]*Sqrt[-3 - 4*x - x^2])])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.31, size = 62, normalized size = 0.65 \begin {gather*} \frac {1}{3} \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} x+\frac {3}{\sqrt {2}}}{\sqrt {-x^2-4 x-3}}\right )+\frac {1}{3} \tanh ^{-1}\left (\frac {x}{\sqrt {-x^2-4 x-3}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[-3 - 4*x - x^2]*(3 + 4*x + 2*x^2)),x]

[Out]

(Sqrt[2]*ArcTan[(3/Sqrt[2] + Sqrt[2]*x)/Sqrt[-3 - 4*x - x^2]])/3 + ArcTanh[x/Sqrt[-3 - 4*x - x^2]]/3

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 132, normalized size = 1.39 \begin {gather*} -\frac {1}{6} \, \sqrt {2} \arctan \left (\frac {\sqrt {2} x + 3 \, \sqrt {2} \sqrt {-x^{2} - 4 \, x - 3}}{2 \, {\left (2 \, x + 3\right )}}\right ) - \frac {1}{6} \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} x - 3 \, \sqrt {2} \sqrt {-x^{2} - 4 \, x - 3}}{2 \, {\left (2 \, x + 3\right )}}\right ) - \frac {1}{12} \, \log \left (-\frac {2 \, \sqrt {-x^{2} - 4 \, x - 3} x + 4 \, x + 3}{x^{2}}\right ) + \frac {1}{12} \, \log \left (\frac {2 \, \sqrt {-x^{2} - 4 \, x - 3} x - 4 \, x - 3}{x^{2}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(2)*arctan(1/2*(sqrt(2)*x + 3*sqrt(2)*sqrt(-x^2 - 4*x - 3))/(2*x + 3)) - 1/6*sqrt(2)*arctan(-1/2*(sqr
t(2)*x - 3*sqrt(2)*sqrt(-x^2 - 4*x - 3))/(2*x + 3)) - 1/12*log(-(2*sqrt(-x^2 - 4*x - 3)*x + 4*x + 3)/x^2) + 1/
12*log((2*sqrt(-x^2 - 4*x - 3)*x - 4*x - 3)/x^2)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 165, normalized size = 1.74 \begin {gather*} -\frac {1}{3} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\frac {3 \, {\left (\sqrt {-x^{2} - 4 \, x - 3} - 1\right )}}{x + 2} + 1\right )}\right ) - \frac {1}{3} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\frac {\sqrt {-x^{2} - 4 \, x - 3} - 1}{x + 2} + 1\right )}\right ) + \frac {1}{6} \, \log \left (\frac {2 \, {\left (\sqrt {-x^{2} - 4 \, x - 3} - 1\right )}}{x + 2} + \frac {3 \, {\left (\sqrt {-x^{2} - 4 \, x - 3} - 1\right )}^{2}}{{\left (x + 2\right )}^{2}} + 1\right ) - \frac {1}{6} \, \log \left (\frac {2 \, {\left (\sqrt {-x^{2} - 4 \, x - 3} - 1\right )}}{x + 2} + \frac {{\left (\sqrt {-x^{2} - 4 \, x - 3} - 1\right )}^{2}}{{\left (x + 2\right )}^{2}} + 3\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="giac")

[Out]

-1/3*sqrt(2)*arctan(1/2*sqrt(2)*(3*(sqrt(-x^2 - 4*x - 3) - 1)/(x + 2) + 1)) - 1/3*sqrt(2)*arctan(1/2*sqrt(2)*(
(sqrt(-x^2 - 4*x - 3) - 1)/(x + 2) + 1)) + 1/6*log(2*(sqrt(-x^2 - 4*x - 3) - 1)/(x + 2) + 3*(sqrt(-x^2 - 4*x -
 3) - 1)^2/(x + 2)^2 + 1) - 1/6*log(2*(sqrt(-x^2 - 4*x - 3) - 1)/(x + 2) + (sqrt(-x^2 - 4*x - 3) - 1)^2/(x + 2
)^2 + 3)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 121, normalized size = 1.27 \begin {gather*} -\frac {\sqrt {3}\, \sqrt {4}\, \sqrt {\frac {3 x^{2}}{\left (-x -\frac {3}{2}\right )^{2}}-12}\, \left (\arctanh \left (\frac {3 x}{\left (-x -\frac {3}{2}\right ) \sqrt {\frac {3 x^{2}}{\left (-x -\frac {3}{2}\right )^{2}}-12}}\right )+\sqrt {2}\, \arctan \left (\frac {\sqrt {\frac {3 x^{2}}{\left (-x -\frac {3}{2}\right )^{2}}-12}\, \sqrt {2}}{6}\right )\right )}{18 \sqrt {\frac {\frac {x^{2}}{\left (-x -\frac {3}{2}\right )^{2}}-4}{\left (\frac {x}{-x -\frac {3}{2}}+1\right )^{2}}}\, \left (\frac {x}{-x -\frac {3}{2}}+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x)

[Out]

-1/18*3^(1/2)*4^(1/2)*(3/(-x-3/2)^2*x^2-12)^(1/2)*(2^(1/2)*arctan(1/6*(3/(-x-3/2)^2*x^2-12)^(1/2)*2^(1/2))+arc
tanh(3/(-x-3/2)/(3/(-x-3/2)^2*x^2-12)^(1/2)*x))/((1/(-x-3/2)^2*x^2-4)/(1/(-x-3/2)*x+1)^2)^(1/2)/(1/(-x-3/2)*x+
1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (2 \, x^{2} + 4 \, x + 3\right )} \sqrt {-x^{2} - 4 \, x - 3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((2*x^2 + 4*x + 3)*sqrt(-x^2 - 4*x - 3)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {-x^2-4\,x-3}\,\left (2\,x^2+4\,x+3\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((- 4*x - x^2 - 3)^(1/2)*(4*x + 2*x^2 + 3)),x)

[Out]

int(1/((- 4*x - x^2 - 3)^(1/2)*(4*x + 2*x^2 + 3)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {- \left (x + 1\right ) \left (x + 3\right )} \left (2 x^{2} + 4 x + 3\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x**2+4*x+3)/(-x**2-4*x-3)**(1/2),x)

[Out]

Integral(1/(sqrt(-(x + 1)*(x + 3))*(2*x**2 + 4*x + 3)), x)

________________________________________________________________________________________